Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

5a-Hydroxyeudesm-4(15),11(13)-dien-8*β*,12-olide

Xue Gao* and Gang Chen

Research Center of Medical Chemistry and Chemical Biology, Chongqing Technology and Business University, Chongqing 400067, People's Republic of China Correspondence e-mail: gaoxue@ctbu.edu.cn

Received 8 March 2012; accepted 22 March 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.036; wR factor = 0.084; data-to-parameter ratio = 8.0.

The title compound, C₁₅H₂₀O₃, a sesquiterpene lactone, was isolated from the aerial parts of Carpesium minus Hemsl. (Compositae). The molecule is composed of three rings, with the two cyclohexane rings in chair conformations and the cyclopentane ring adopting a twist conformation. The A/B ring junction is trans-fused. The absolute configuration shown has been arbitrarily assigned. In the crystal, molecules are linked into [100] chains by $O-H \cdots O$ hydrogen bonds.

Related literature

For the isolation and biological activity of the title compound, see: Lee et al. (2002); Yang et al. (2002); Li et al. (2011). For conformational analysis, see: Cremer & Pople (1975).

Experimental

Crystal data

$C_{15}H_{20}O_3$	V = 662.7 (3) Å ³
$M_r = 248.31$	Z = 2
Monoclinic, P2 ₁	Mo $K\alpha$ radiation
a = 7.893 (2) Å	$\mu = 0.09 \text{ mm}^{-1}$
b = 7.034 (2) Å	T = 296 K
c = 12.166 (4) Å	$0.23 \times 0.20 \times 0.19 \text{ mm}$
$\beta = 101.154 \ (3)^{\circ}$	

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2006) $T_{\min} = 0.981, \ T_{\max} = 0.984$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.036$	1 restraint
$wR(F^2) = 0.084$	H-atom parameters constrained
S = 1.08	$\Delta \rho_{\rm max} = 0.12 \ {\rm e} \ {\rm \AA}^{-3}$
1323 reflections	$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$
165 parameters	

3673 measured reflections

 $R_{\rm int} = 0.024$

1323 independent reflections

1159 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1-H1A\cdots O3^{i}$	0.82	2.06	2.868 (2)	168

Symmetry code: (i) x + 1, y, z.

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the Ministry of Education of Chongqing (grant No. KJ100719) and the Innovative Research Team Development Program of the University of Chongqing (grant No. KJTD201020).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RN2102).

References

Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

Lee, J. S., Min, B. S., Lee, S. M., Na, M. K., Kwon, B. M., Lee, C. O., Kim, Y. H. & Bae, K. H. (2002). Planta Med. 68, 745-747.

Li, X. W., Weng, L., Gao, X., Zhao, Y., Pang, F., Liu, J. H., Zhang, H. F. & Hu, J. F. (2011). Bioorg. Med. Chem. Lett. 21, 366-372.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Yang, C., Shi, Y. P. & Jia, Z. J. (2002). Planta Med. 68, 626-630.

supplementary materials

Acta Cryst. (2012). E68, o1208 [doi:10.1107/S1600536812012470]

5α -Hydroxyeudesm-4(15),11(13)-dien-8 β ,12-olide

Xue Gao and Gang Chen

Comment

The title compound, 5α -hydroxyeudesm-4(15),11 (13)-dien- 8β ,12-olide (Fig.1), was isolated from the medicinal plant *Carpesium minus* (Compositae). This plant has been used to reduce swelling, relieve pain and as a detoxifying agent. The compound was identified by NMR spectra, which were compared with the previous reports (Lee *et al.*, 2002; Yang *et al.*, 2002; Li *et al.*, 2011). Herewith, we present its crystal structure.

The molecule of the title compound has three fused rings consisting of two six- and one five-membered rings (A/B/C). The A/B ring junction is *trans*-fused and B/C is *cis*-fused. The two cyclohexane rings have chair conformations with puckering parameters (Cremer & Pople,1975) Q = 0.571 (2) Å, $\theta = 175.7$ (2)° and $\varphi = 134$ (4)° for the A ring and Q = 0.512 (2) Å, $\theta = 156.4$ (2)° and $\varphi = 344.9$ (6)° for the B ring; the cyclopentane ring adopts a twist conformation with puckering parameters Q = 0.258 (2) Å and $\varphi = 237.1$ (4)°. In the crystal, the molecules are linked into chains by intermolecular O—H···O hydrogen bonds.

Experimental

The air-dried whole plants of *Carpesium minus* (3.1 g) were pulverized and extracted with 95% EtOH and yielded 439 g of crude extract, which was then suspended in 2 *L* water. The suspension was partitioned with EtOAc (3×800 ml) to give a EtOAc-soluble portion, and a water-soluble fraction. After removal of the EtOAc under reduced pressure, 356 g of dark residue was obtained, and this was subjected to silica-gel chromatography, eluted with a stepwise gradient solvent system of petroleum/acetone 50: 1 to 0: 1 (v/v), to yield six major fractions (monitored by TLC). The third fraction (68 g) was rechromatographed on silica gel using a chloroform/MeOH (1: 0 to 30: 1) system and three fractions (Fr.A—Fr.C) were collected. Fr.B was further fractionated on a silica gel column using petroleum/EtOAc (3: 1) to give pure the title compound as colorless crystals.

Refinement

All H atoms were placed in geometrically calculated positions, and allowed to ride on their parent atoms with O-H = 0.82 Å and C-H = 0.93-0.98 Å, and with $U_{iso}(H) = xU_{eq}$ (C), where x = 1.5 for methyl H atoms and hydroxyl group H atoms, and x = 1.2 for all other H atoms. In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration is arbitrary.

Computing details

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT* (Bruker, 2006); data reduction: *SAINT* (Bruker, 2006); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Figure 1

The molecular structure of the compound, with atom labels and 50% probability displacement ellipsoids.

5α-Hydroxyeudesm-4(15),11 (13)-dien-8β,12-olide

Crystal data

 $C_{15}H_{20}O_3$ $M_r = 248.31$ Monoclinic, $P2_1$ a = 7.893 (2) Å b = 7.034 (2) Å c = 12.166 (4) Å $\beta = 101.154$ (3)° V = 662.7 (3) Å³ Z = 2

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2006) $T_{\min} = 0.981, T_{\max} = 0.984$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.084$ S = 1.081323 reflections 165 parameters 1 restraint F(000) = 268 $D_x = 1.244 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1583 reflections $\theta = 2.9-23.8^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 296 KBlock, colorless $0.23 \times 0.20 \times 0.19 \text{ mm}$

3673 measured reflections 1323 independent reflections 1159 reflections with $I > 2\sigma(I)$ $R_{int} = 0.024$ $\theta_{max} = 25.5^{\circ}, \ \theta_{min} = 2.9^{\circ}$ $h = -9 \rightarrow 9$ $k = -8 \rightarrow 7$ $l = -13 \rightarrow 14$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.046P)^{2} + 0.026P] \qquad \Delta \rho_{max} = 0.12 \text{ e} \text{ Å}^{-3}$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3 \qquad \Delta \rho_{min} = -0.17 \text{ e} \text{ Å}^{-3}$ $(\Delta/\sigma)_{max} < 0.001$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

(Fractional atomic coordinates and	l isotropic or	equivalent isotropic	e displacement	parameters	$(Å^2)$)
---	-----------------------------------	----------------	----------------------	----------------	------------	---------	---

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.5831 (3)	0.5040 (4)	0.2805 (2)	0.0451 (6)
H1	0.5843	0.6432	0.2844	0.054*
C2	0.6238 (3)	0.4471 (4)	0.1686 (2)	0.0462 (6)
H2A	0.7088	0.5353	0.1504	0.055*
H2B	0.5197	0.4618	0.1120	0.055*
C3	0.6920 (3)	0.2446 (4)	0.16056 (19)	0.0404 (6)
C4	0.7625 (4)	0.2265 (4)	0.0514 (2)	0.0534 (7)
H4A	0.6677	0.2421	-0.0118	0.064*
H4B	0.8442	0.3285	0.0486	0.064*
C5	0.8506 (4)	0.0380 (5)	0.0400 (2)	0.0663 (9)
H5A	0.8998	0.0396	-0.0272	0.080*
H5B	0.7660	-0.0635	0.0325	0.080*
C6	0.9931 (4)	-0.0002 (5)	0.1417 (2)	0.0619 (8)
H6A	1.0384	-0.1275	0.1367	0.074*
H6B	1.0868	0.0893	0.1425	0.074*
C7	0.9243 (3)	0.0189 (4)	0.2486 (2)	0.0428 (6)
C8	0.8428 (3)	0.2111 (3)	0.26178 (18)	0.0370 (5)
C9	0.7793 (3)	0.2326 (3)	0.37155 (18)	0.0364 (5)
H9A	0.8753	0.2109	0.4332	0.044*
H9B	0.6931	0.1357	0.3752	0.044*
C10	0.7006 (3)	0.4286 (3)	0.38653 (18)	0.0391 (5)
H10	0.7921	0.5208	0.4142	0.047*
C11	0.5786 (3)	0.4143 (3)	0.46605 (19)	0.0397 (5)
C12	0.4025 (3)	0.4029 (3)	0.3975 (2)	0.0439 (6)
C13	0.5451 (3)	0.0994 (4)	0.1587 (2)	0.0491 (6)
H13A	0.4607	0.1147	0.0910	0.074*
H13B	0.4917	0.1202	0.2222	0.074*
H13C	0.5915	-0.0271	0.1618	0.074*
C14	0.9291 (3)	-0.1238 (4)	0.3199 (2)	0.0514 (6)
H14A	0.9759	-0.2401	0.3049	0.062*
H14B	0.8857	-0.1079	0.3852	0.062*
C15	0.6070 (3)	0.4053 (4)	0.5758 (2)	0.0516 (7)
H15A	0.5149	0.3913	0.6127	0.062*

H15B	0.7192	0.4128	0.6168	0.062*
01	0.9648 (2)	0.3595 (3)	0.25349 (15)	0.0503 (5)
H1A	1.0515	0.3445	0.3021	0.075*
O2	0.40859 (19)	0.4391 (3)	0.28997 (13)	0.0530 (5)
O3	0.2681 (2)	0.3667 (3)	0.42676 (14)	0.0585 (5)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0446 (14)	0.0397 (13)	0.0508 (14)	0.0042 (11)	0.0082 (11)	0.0056 (12)
C2	0.0434 (13)	0.0513 (15)	0.0420 (13)	0.0031 (12)	0.0038 (10)	0.0127 (12)
C3	0.0365 (12)	0.0485 (15)	0.0358 (12)	0.0004 (11)	0.0058 (10)	0.0046 (11)
C4	0.0549 (15)	0.0681 (19)	0.0381 (13)	0.0003 (15)	0.0112 (11)	0.0055 (13)
C5	0.0695 (19)	0.083 (2)	0.0496 (16)	0.0125 (18)	0.0210 (14)	-0.0051 (15)
C6	0.0571 (17)	0.072 (2)	0.0608 (17)	0.0137 (15)	0.0213 (14)	-0.0028 (15)
C7	0.0332 (12)	0.0468 (14)	0.0473 (14)	0.0009 (11)	0.0050 (10)	-0.0027 (12)
C8	0.0299 (11)	0.0393 (12)	0.0405 (12)	-0.0064 (10)	0.0037 (9)	0.0032 (10)
C9	0.0331 (12)	0.0388 (13)	0.0346 (12)	-0.0009 (10)	-0.0001 (9)	0.0001 (10)
C10	0.0360 (12)	0.0373 (13)	0.0421 (12)	-0.0046 (11)	0.0030 (9)	-0.0010 (11)
C11	0.0380 (12)	0.0347 (12)	0.0463 (13)	-0.0018 (11)	0.0077 (10)	-0.0058 (10)
C12	0.0395 (13)	0.0425 (14)	0.0491 (14)	0.0017 (11)	0.0076 (10)	-0.0060 (11)
C13	0.0422 (14)	0.0570 (16)	0.0447 (14)	-0.0085 (12)	0.0003 (11)	-0.0044 (12)
C14	0.0465 (14)	0.0438 (15)	0.0634 (16)	0.0054 (12)	0.0096 (12)	-0.0006 (13)
C15	0.0537 (15)	0.0541 (16)	0.0471 (15)	0.0042 (13)	0.0099 (11)	-0.0043 (12)
01	0.0357 (9)	0.0532 (11)	0.0608 (11)	-0.0118 (8)	0.0062 (7)	0.0067 (9)
O2	0.0357 (9)	0.0746 (13)	0.0470 (10)	0.0067 (9)	0.0036 (7)	0.0005 (9)
O3	0.0364 (9)	0.0772 (13)	0.0632 (11)	-0.0042(9)	0.0130 (8)	-0.0094 (10)

Geometric parameters (Å, °)

C1—02	1.476 (3)	C7—C8	1.519 (3)
C1—C2	1.512 (3)	C8—O1	1.437 (3)
C1-C10	1.531 (3)	C8—C9	1.522 (3)
C1—H1	0.9800	C9—C10	1.538 (3)
С2—С3	1.533 (4)	С9—Н9А	0.9700
C2—H2A	0.9700	С9—Н9В	0.9700
C2—H2B	0.9700	C10—C11	1.495 (3)
C3—C4	1.541 (3)	C10—H10	0.9800
C3—C13	1.542 (3)	C11—C15	1.312 (3)
С3—С8	1.556 (3)	C11—C12	1.478 (3)
C4—C5	1.516 (4)	C12—O3	1.210 (3)
C4—H4A	0.9700	C12—O2	1.342 (3)
C4—H4B	0.9700	C13—H13A	0.9600
C5—C6	1.526 (4)	C13—H13B	0.9600
С5—Н5А	0.9700	C13—H13C	0.9600
С5—Н5В	0.9700	C14—H14A	0.9300
С6—С7	1.509 (3)	C14—H14B	0.9300
С6—Н6А	0.9700	C15—H15A	0.9300
С6—Н6В	0.9700	C15—H15B	0.9300
C7—C14	1.323 (4)	O1—H1A	0.8200

O2—C1—C2	110.7 (2)	O1—C8—C7	109.61 (18)
O2—C1—C10	104.44 (17)	O1—C8—C9	109.18 (19)
C2—C1—C10	117.9 (2)	C7—C8—C9	113.54 (19)
O2—C1—H1	107.8	O1—C8—C3	104.78 (17)
C2—C1—H1	107.8	C7—C8—C3	109.00 (19)
C10—C1—H1	107.8	C9—C8—C3	110.37 (17)
C1—C2—C3	116.2 (2)	C8—C9—C10	113.71 (18)
C1—C2—H2A	108.2	С8—С9—Н9А	108.8
C3—C2—H2A	108.2	С10—С9—Н9А	108.8
C1—C2—H2B	108.2	С8—С9—Н9В	108.8
C3—C2—H2B	108.2	C10—C9—H9B	108.8
H2A—C2—H2B	107.4	H9A—C9—H9B	107.7
C2—C3—C4	108.73 (19)	C11—C10—C1	101.97 (17)
$C_2 - C_3 - C_{13}$	110.1 (2)	C11—C10—C9	109.97 (19)
C4-C3-C13	109.2(2)	C1-C10-C9	113 80 (19)
$C^2 - C^3 - C^8$	109.2(2) 108.32(19)	$C_{11} - C_{10} - H_{10}$	110.3
C_{4} C_{3} C_{8}	108.32(19) 108.73(18)	C1 - C10 - H10	110.3
C_{13} C_{3} C_{8}	111 67 (18)	C9-C10-H10	110.3
$C_{5} - C_{4} - C_{3}$	113.5(2)	C_{15} C_{11} C_{12}	121.9(2)
$C_5 - C_4 - H_{4A}$	108.9	C_{15} C_{11} C_{10}	121.9(2) 131.1(2)
$C_3 - C_4 - H_4 A$	108.9	C_{12} C_{11} C_{10}	106.96(19)
$C_5 - C_4 - H_{4B}$	108.9	03-C12-02	121.7(2)
$C_3 - C_4 - H_4 B$	108.9	03 - C12 - C11	121.7(2) 128.9(2)
$H_{4} - C_{4} - H_{4} B$	107.7	02-C12-C11	128.9(2) 109.43(19)
C4-C5-C6	111 1 (3)	C_{3} C_{13} H_{13}	109.45 (17)
$C_4 = C_5 = H_5 \Lambda$	100 /	$C_3 = C_{13} = H_{13}R$	109.5
C6 C5 H5A	109.4	H13A C13 H13B	109.5
C_{4} C_{5} H5B	109.4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
C6 C5 H5B	109.4		109.5
	109.4	H12P C12 H12C	109.5
$113A - C_3 - 113B$	100.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
C7 C6 H6A	100.5	C7 C14 H14R	120.0
$C_{2} = C_{2} = H_{2}$	109.5	$H_{14A} = C_{14} = H_{14B}$	120.0
C_{3}	109.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120.0
$C_{1} = C_{0} = H_{0}$	109.5	C_{11} C_{15} H_{15R}	120.0
	109.5	H15A C15 H15B	120.0
C_{14} C_{7} C_{6}	100.1 1210(2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120.0
$C_{14} = C_{7} = C_{8}$	121.9(2) 124.4(2)	$C_{0} = O_{1} = HIA$	109.3
$C_{14} - C_{7} - C_{8}$	124.4(2) 112.6(2)	02-02-01	110.13 (17)
0-0/-08	115.0 (2)		
O2—C1—C2—C3	-83.6 (3)	C2—C3—C8—C9	60.6 (2)
C10—C1—C2—C3	36.5 (3)	C4—C3—C8—C9	178.6 (2)
C1—C2—C3—C4	-168.0 (2)	C13—C3—C8—C9	-60.9 (2)
C1—C2—C3—C13	72.4 (3)	O1—C8—C9—C10	56.0 (2)
C1—C2—C3—C8	-49.9 (3)	C7—C8—C9—C10	178.61 (18)
C2—C3—C4—C5	174.0 (2)	C3—C8—C9—C10	-58.7 (2)
C13—C3—C4—C5	-65.8 (3)	O2—C1—C10—C11	-26.1 (2)
C8—C3—C4—C5	56.2 (3)	C2-C1-C10-C11	-149.3 (2)

C3—C4—C5—C6	-54.6 (3)	O2—C1—C10—C9	92.3 (2)
C4—C5—C6—C7	52.6 (3)	C2-C1-C10-C9	-31.0 (3)
C5—C6—C7—C14	120.5 (3)	C8—C9—C10—C11	156.08 (18)
C5—C6—C7—C8	-56.6 (3)	C8—C9—C10—C1	42.4 (2)
C14—C7—C8—O1	127.5 (3)	C1—C10—C11—C15	-160.4 (3)
C6—C7—C8—O1	-55.5 (3)	C9—C10—C11—C15	78.5 (3)
C14—C7—C8—C9	5.1 (3)	C1—C10—C11—C12	22.0 (2)
C6—C7—C8—C9	-177.9 (2)	C9—C10—C11—C12	-99.1 (2)
C14—C7—C8—C3	-118.4 (3)	C15-C11-C12-O3	-7.9 (4)
C6—C7—C8—C3	58.6 (2)	C10-C11-C12-O3	170.0 (3)
C2-C3-C8-O1	-56.8 (2)	C15—C11—C12—O2	172.5 (2)
C4—C3—C8—O1	61.2 (2)	C10-C11-C12-O2	-9.7 (3)
C13—C3—C8—O1	-178.3 (2)	O3—C12—O2—C1	172.3 (2)
C2—C3—C8—C7	-174.07 (19)	C11—C12—O2—C1	-8.1 (3)
C4—C3—C8—C7	-56.1 (2)	C2-C1-O2-C12	149.8 (2)
<u>C13—C3—C8—C7</u>	64.5 (2)	C10-C1-O2-C12	22.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
O1—H1A····O3 ⁱ	0.82	2.06	2.868 (2)	168

Symmetry code: (i) x+1, y, z.